Documentation

Std.Data.DHashMap.Internal.List.Perm

This is an internal implementation file of the hash map. Users of the hash map should not rely on the contents of this file.

File contents: tiny private implementation of List.Perm

inductive Std.DHashMap.Internal.List.Perm {α : Type u} :
List αList αProp

Internal implementation detail of the hash map

Instances For
    theorem Std.DHashMap.Internal.List.Perm.append_right {α : Type u} {l₁ : List α} {l₂ : List α} (l₃ : List α) (h : Std.DHashMap.Internal.List.Perm l₁ l₂) :
    Std.DHashMap.Internal.List.Perm (l₁ ++ l₃) (l₂ ++ l₃)
    theorem Std.DHashMap.Internal.List.perm_middle {α : Type u} {l₁ : List α} {l₂ : List α} {a : α} :
    Std.DHashMap.Internal.List.Perm (l₁ ++ a :: l₂) (a :: (l₁ ++ l₂))
    theorem Std.DHashMap.Internal.List.perm_append_comm {α : Type u} {l₁ : List α} {l₂ : List α} :
    Std.DHashMap.Internal.List.Perm (l₁ ++ l₂) (l₂ ++ l₁)
    theorem Std.DHashMap.Internal.List.Perm.append_left {α : Type u} (l₁ : List α) {l₂ : List α} {l₃ : List α} (h : Std.DHashMap.Internal.List.Perm l₂ l₃) :
    Std.DHashMap.Internal.List.Perm (l₁ ++ l₂) (l₁ ++ l₃)
    theorem Std.DHashMap.Internal.List.Perm.append {α : Type u} {l₁ : List α} {l₂ : List α} {l₃ : List α} {l₄ : List α} (h₁ : Std.DHashMap.Internal.List.Perm l₁ l₂) (h₂ : Std.DHashMap.Internal.List.Perm l₃ l₄) :
    Std.DHashMap.Internal.List.Perm (l₁ ++ l₃) (l₂ ++ l₄)
    theorem Std.DHashMap.Internal.List.Perm.length_eq {α : Type u} {l : List α} {l' : List α} (h : Std.DHashMap.Internal.List.Perm l l') :
    l.length = l'.length
    theorem Std.DHashMap.Internal.List.Perm.isEmpty_eq {α : Type u} {l : List α} {l' : List α} (h : Std.DHashMap.Internal.List.Perm l l') :
    l.isEmpty = l'.isEmpty
    theorem Std.DHashMap.Internal.List.perm_append_comm_assoc {α : Type u} (l₁ : List α) (l₂ : List α) (l₃ : List α) :
    Std.DHashMap.Internal.List.Perm (l₁ ++ (l₂ ++ l₃)) (l₂ ++ (l₁ ++ l₃))
    theorem Std.DHashMap.Internal.List.Perm.mem_iff {α : Type u} {l₁ : List α} {l₂ : List α} (h : Std.DHashMap.Internal.List.Perm l₁ l₂) {a : α} :
    a l₁ a l₂
    theorem Std.DHashMap.Internal.List.Perm.map {α : Type u} {β : Type v} (f : αβ) {l₁ : List α} {l₂ : List α} (h : Std.DHashMap.Internal.List.Perm l₁ l₂) :