Dependent hash map lemmas #
This file contains lemmas about Std.Data.DHashMap
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
@[simp]
@[simp]
theorem
Std.DHashMap.isEmpty_insert
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insert k v).isEmpty = false
theorem
Std.DHashMap.contains_congr
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α},
(a == b) = true → m.contains a = m.contains b
@[simp]
@[simp]
theorem
Std.DHashMap.contains_of_isEmpty
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → m.contains a = false
theorem
Std.DHashMap.not_mem_of_isEmpty
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → ¬a ∈ m
theorem
Std.DHashMap.isEmpty_eq_false_iff_exists_contains_eq_true
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = false ↔ ∃ (a : α), m.contains a = true
theorem
Std.DHashMap.isEmpty_eq_false_iff_exists_mem
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = false ↔ ∃ (a : α), a ∈ m
theorem
Std.DHashMap.isEmpty_iff_forall_contains
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = true ↔ ∀ (a : α), m.contains a = false
theorem
Std.DHashMap.isEmpty_iff_forall_not_mem
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = true ↔ ∀ (a : α), ¬a ∈ m
@[simp]
theorem
Std.DHashMap.contains_insert
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}
{v : β k}, (m.insert k v).contains a = (k == a || m.contains a)
theorem
Std.DHashMap.mem_of_mem_insert
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}
{v : β k}, a ∈ m.insert k v → (k == a) = false → a ∈ m
@[simp]
theorem
Std.DHashMap.contains_insert_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insert k v).contains k = true
@[simp]
theorem
Std.DHashMap.mem_insert_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
k ∈ m.insert k v
@[simp]
theorem
Std.DHashMap.size_empty
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {c : Nat}, (Std.DHashMap.empty c).size = 0
theorem
Std.DHashMap.isEmpty_eq_size_eq_zero
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β}, m.isEmpty = (m.size == 0)
theorem
Std.DHashMap.size_insert
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insert k v).size = if k ∈ m then m.size else m.size + 1
theorem
Std.DHashMap.size_le_size_insert
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
m.size ≤ (m.insert k v).size
theorem
Std.DHashMap.size_insert_le
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insert k v).size ≤ m.size + 1
@[simp]
theorem
Std.DHashMap.erase_empty
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {k : α} {c : Nat}, (Std.DHashMap.empty c).erase k = Std.DHashMap.empty c
@[simp]
theorem
Std.DHashMap.isEmpty_erase
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).isEmpty = (m.isEmpty || m.size == 1 && m.contains k)
@[simp]
theorem
Std.DHashMap.contains_erase
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).contains a = (!k == a && m.contains a)
theorem
Std.DHashMap.contains_of_contains_erase
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).contains a = true → m.contains a = true
theorem
Std.DHashMap.mem_of_mem_erase
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
a ∈ m.erase k → a ∈ m
theorem
Std.DHashMap.size_erase
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).size = if k ∈ m then m.size - 1 else m.size
theorem
Std.DHashMap.size_erase_le
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).size ≤ m.size
theorem
Std.DHashMap.size_le_size_erase
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
m.size ≤ (m.erase k).size + 1
@[simp]
theorem
Std.DHashMap.containsThenInsert_fst
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} {k : α} {v : β k}, (m.containsThenInsert k v).fst = m.contains k
@[simp]
theorem
Std.DHashMap.containsThenInsert_snd
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} {k : α} {v : β k}, (m.containsThenInsert k v).snd = m.insert k v
@[simp]
theorem
Std.DHashMap.containsThenInsertIfNew_fst
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} {k : α} {v : β k},
(m.containsThenInsertIfNew k v).fst = m.contains k
@[simp]
theorem
Std.DHashMap.containsThenInsertIfNew_snd
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} {k : α} {v : β k},
(m.containsThenInsertIfNew k v).snd = m.insertIfNew k v
@[simp]
@[simp]
theorem
Std.DHashMap.contains_eq_isSome_get?
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {a : α}, m.contains a = (m.get? a).isSome
@[simp]
theorem
Std.DHashMap.get?_erase_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {k : α}, (m.erase k).get? k = none
@[simp]
theorem
Std.DHashMap.Const.get?_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {a : α} {c : Nat}, Std.DHashMap.Const.get? (Std.DHashMap.empty c) a = none
@[simp]
theorem
Std.DHashMap.Const.get?_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α}, m.isEmpty = true → Std.DHashMap.Const.get? m a = none
theorem
Std.DHashMap.Const.get?_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k a : α} {v : β},
Std.DHashMap.Const.get? (m.insert k v) a = if (k == a) = true then some v else Std.DHashMap.Const.get? m a
@[simp]
theorem
Std.DHashMap.Const.get?_insert_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k : α} {v : β}, Std.DHashMap.Const.get? (m.insert k v) k = some v
theorem
Std.DHashMap.Const.contains_eq_isSome_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α}, m.contains a = (Std.DHashMap.Const.get? m a).isSome
theorem
Std.DHashMap.Const.get?_eq_none_of_contains_eq_false
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α}, m.contains a = false → Std.DHashMap.Const.get? m a = none
theorem
Std.DHashMap.Const.get?_eq_none
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α}, ¬a ∈ m → Std.DHashMap.Const.get? m a = none
theorem
Std.DHashMap.Const.get?_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k a : α},
Std.DHashMap.Const.get? (m.erase k) a = if (k == a) = true then none else Std.DHashMap.Const.get? m a
@[simp]
theorem
Std.DHashMap.Const.get?_erase_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k : α}, Std.DHashMap.Const.get? (m.erase k) k = none
theorem
Std.DHashMap.Const.get?_eq_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : LawfulBEq α] {a : α},
Std.DHashMap.Const.get? m a = m.get? a
theorem
Std.DHashMap.Const.get?_congr
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a b : α}, (a == b) = true → Std.DHashMap.Const.get? m a = Std.DHashMap.Const.get? m b
@[simp]
theorem
Std.DHashMap.get_insert_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {k : α} {v : β k},
(m.insert k v).get k ⋯ = v
@[simp]
theorem
Std.DHashMap.Const.get_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst_1 : LawfulHashable α] {k a : α} {v : β} {h₁ : a ∈ m.insert k v},
Std.DHashMap.Const.get (m.insert k v) a h₁ = if h₂ : (k == a) = true then v else Std.DHashMap.Const.get m a ⋯
@[simp]
theorem
Std.DHashMap.Const.get_insert_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst_1 : LawfulHashable α] {k : α} {v : β}, Std.DHashMap.Const.get (m.insert k v) k ⋯ = v
@[simp]
theorem
Std.DHashMap.Const.get_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst_1 : LawfulHashable α] {k a : α} {h' : a ∈ m.erase k},
Std.DHashMap.Const.get (m.erase k) a h' = Std.DHashMap.Const.get m a ⋯
theorem
Std.DHashMap.Const.get?_eq_some_get
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {h : a ∈ m}, Std.DHashMap.Const.get? m a = some (Std.DHashMap.Const.get m a h)
theorem
Std.DHashMap.Const.get_eq_get
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : LawfulBEq α] {a : α}
{h : a ∈ m}, Std.DHashMap.Const.get m a h = m.get a h
theorem
Std.DHashMap.Const.get_congr
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : LawfulBEq α] {a b : α}
(hab : (a == b) = true) {h' : a ∈ m}, Std.DHashMap.Const.get m a h' = Std.DHashMap.Const.get m b ⋯
@[simp]
@[simp]
@[simp]
theorem
Std.DHashMap.Const.get!_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} [inst : Inhabited β] {a : α} {c : Nat},
Std.DHashMap.Const.get! (Std.DHashMap.empty c) a = default
@[simp]
theorem
Std.DHashMap.Const.get!_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m.isEmpty = true → Std.DHashMap.Const.get! m a = default
theorem
Std.DHashMap.Const.get!_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {k a : α} {v : β},
Std.DHashMap.Const.get! (m.insert k v) a = if (k == a) = true then v else Std.DHashMap.Const.get! m a
@[simp]
theorem
Std.DHashMap.Const.get!_insert_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {k : α} {v : β}, Std.DHashMap.Const.get! (m.insert k v) k = v
theorem
Std.DHashMap.Const.get!_eq_default_of_contains_eq_false
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m.contains a = false → Std.DHashMap.Const.get! m a = default
theorem
Std.DHashMap.Const.get!_eq_default
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α}, ¬a ∈ m → Std.DHashMap.Const.get! m a = default
theorem
Std.DHashMap.Const.get!_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {k a : α},
Std.DHashMap.Const.get! (m.erase k) a = if (k == a) = true then default else Std.DHashMap.Const.get! m a
@[simp]
theorem
Std.DHashMap.Const.get!_erase_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {k : α}, Std.DHashMap.Const.get! (m.erase k) k = default
theorem
Std.DHashMap.Const.get?_eq_some_get!_of_contains
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α},
m.contains a = true → Std.DHashMap.Const.get? m a = some (Std.DHashMap.Const.get! m a)
theorem
Std.DHashMap.Const.get?_eq_some_get!
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α},
a ∈ m → Std.DHashMap.Const.get? m a = some (Std.DHashMap.Const.get! m a)
theorem
Std.DHashMap.Const.get!_eq_get!_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α},
Std.DHashMap.Const.get! m a = (Std.DHashMap.Const.get? m a).get!
theorem
Std.DHashMap.Const.get_eq_get!
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α} {h : a ∈ m},
Std.DHashMap.Const.get m a h = Std.DHashMap.Const.get! m a
theorem
Std.DHashMap.Const.get!_eq_get!
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : LawfulBEq α]
[inst_1 : Inhabited β] {a : α}, Std.DHashMap.Const.get! m a = m.get! a
theorem
Std.DHashMap.Const.get!_congr
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a b : α},
(a == b) = true → Std.DHashMap.Const.get! m a = Std.DHashMap.Const.get! m b
@[simp]
@[simp]
theorem
Std.DHashMap.getD_insert_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {k : α} {fallback v : β k},
(m.insert k v).getD k fallback = v
@[simp]
theorem
Std.DHashMap.getD_erase_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {k : α} {fallback : β k},
(m.erase k).getD k fallback = fallback
theorem
Std.DHashMap.getD_eq_getD_get?
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {a : α} {fallback : β a},
m.getD a fallback = (m.get? a).getD fallback
@[simp]
theorem
Std.DHashMap.Const.getD_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {a : α} {fallback : β} {c : Nat},
Std.DHashMap.Const.getD (Std.DHashMap.empty c) a fallback = fallback
@[simp]
theorem
Std.DHashMap.Const.getD_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β}, m.isEmpty = true → Std.DHashMap.Const.getD m a fallback = fallback
theorem
Std.DHashMap.Const.getD_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k a : α} {fallback v : β},
Std.DHashMap.Const.getD (m.insert k v) a fallback = if (k == a) = true then v else Std.DHashMap.Const.getD m a fallback
@[simp]
theorem
Std.DHashMap.Const.getD_insert_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k : α} {fallback v : β}, Std.DHashMap.Const.getD (m.insert k v) k fallback = v
theorem
Std.DHashMap.Const.getD_eq_fallback_of_contains_eq_false
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β},
m.contains a = false → Std.DHashMap.Const.getD m a fallback = fallback
theorem
Std.DHashMap.Const.getD_eq_fallback
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β}, ¬a ∈ m → Std.DHashMap.Const.getD m a fallback = fallback
theorem
Std.DHashMap.Const.getD_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k a : α} {fallback : β},
Std.DHashMap.Const.getD (m.erase k) a fallback = if (k == a) = true then fallback else Std.DHashMap.Const.getD m a fallback
@[simp]
theorem
Std.DHashMap.Const.getD_erase_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k : α} {fallback : β}, Std.DHashMap.Const.getD (m.erase k) k fallback = fallback
theorem
Std.DHashMap.Const.get?_eq_some_getD_of_contains
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β},
m.contains a = true → Std.DHashMap.Const.get? m a = some (Std.DHashMap.Const.getD m a fallback)
theorem
Std.DHashMap.Const.get?_eq_some_getD
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β},
a ∈ m → Std.DHashMap.Const.get? m a = some (Std.DHashMap.Const.getD m a fallback)
theorem
Std.DHashMap.Const.getD_eq_getD_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β},
Std.DHashMap.Const.getD m a fallback = (Std.DHashMap.Const.get? m a).getD fallback
theorem
Std.DHashMap.Const.get_eq_getD
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a : α} {fallback : β} {h : a ∈ m},
Std.DHashMap.Const.get m a h = Std.DHashMap.Const.getD m a fallback
theorem
Std.DHashMap.Const.get!_eq_getD_default
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {a : α},
Std.DHashMap.Const.get! m a = Std.DHashMap.Const.getD m a default
theorem
Std.DHashMap.Const.getD_eq_getD
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : LawfulBEq α] {a : α}
{fallback : β}, Std.DHashMap.Const.getD m a fallback = m.getD a fallback
theorem
Std.DHashMap.Const.getD_congr
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {a b : α} {fallback : β},
(a == b) = true → Std.DHashMap.Const.getD m a fallback = Std.DHashMap.Const.getD m b fallback
@[simp]
theorem
Std.DHashMap.isEmpty_insertIfNew
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insertIfNew k v).isEmpty = false
@[simp]
theorem
Std.DHashMap.contains_insertIfNew
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}
{v : β k}, (m.insertIfNew k v).contains a = (k == a || m.contains a)
theorem
Std.DHashMap.contains_insertIfNew_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insertIfNew k v).contains k = true
theorem
Std.DHashMap.mem_insertIfNew_self
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
k ∈ m.insertIfNew k v
theorem
Std.DHashMap.mem_of_mem_insertIfNew
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}
{v : β k}, a ∈ m.insertIfNew k v → (k == a) = false → a ∈ m
This is a restatement of contains_insertIfNew
that is written to exactly match the proof
obligation in the statement of get_insertIfNew
.
This is a restatement of mem_insertIfNew
that is written to exactly match the proof obligation
in the statement of get_insertIfNew
.
theorem
Std.DHashMap.size_insertIfNew
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insertIfNew k v).size = if k ∈ m then m.size else m.size + 1
theorem
Std.DHashMap.size_le_size_insertIfNew
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
m.size ≤ (m.insertIfNew k v).size
theorem
Std.DHashMap.size_insertIfNew_le
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β k},
(m.insertIfNew k v).size ≤ m.size + 1
theorem
Std.DHashMap.Const.get?_insertIfNew
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k a : α} {v : β},
Std.DHashMap.Const.get? (m.insertIfNew k v) a = if (k == a) = true ∧ ¬k ∈ m then some v else Std.DHashMap.Const.get? m a
theorem
Std.DHashMap.Const.get_insertIfNew
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst_1 : LawfulHashable α] {k a : α} {v : β} {h₁ : a ∈ m.insertIfNew k v},
Std.DHashMap.Const.get (m.insertIfNew k v) a h₁ = if h₂ : (k == a) = true ∧ ¬k ∈ m then v else Std.DHashMap.Const.get m a ⋯
theorem
Std.DHashMap.Const.get!_insertIfNew
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] [inst : Inhabited β] {k a : α} {v : β},
Std.DHashMap.Const.get! (m.insertIfNew k v) a = if (k == a) = true ∧ ¬k ∈ m then v else Std.DHashMap.Const.get! m a
theorem
Std.DHashMap.Const.getD_insertIfNew
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} [inst : EquivBEq α]
[inst : LawfulHashable α] {k a : α} {fallback v : β},
Std.DHashMap.Const.getD (m.insertIfNew k v) a fallback = if (k == a) = true ∧ ¬k ∈ m then v else Std.DHashMap.Const.getD m a fallback
@[simp]
theorem
Std.DHashMap.getThenInsertIfNew?_fst
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {k : α} {v : β k},
(m.getThenInsertIfNew? k v).fst = m.get? k
@[simp]
theorem
Std.DHashMap.getThenInsertIfNew?_snd
{α : Type u}
{β : α → Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.DHashMap α β} [inst : LawfulBEq α] {k : α} {v : β k},
(m.getThenInsertIfNew? k v).snd = m.insertIfNew k v
@[simp]
theorem
Std.DHashMap.Const.getThenInsertIfNew?_fst
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} {k : α} {v : β},
(Std.DHashMap.Const.getThenInsertIfNew? m k v).fst = Std.DHashMap.Const.get? m k
@[simp]
theorem
Std.DHashMap.Const.getThenInsertIfNew?_snd
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {β : Type v} {m : Std.DHashMap α fun (x : α) => β} {k : α} {v : β},
(Std.DHashMap.Const.getThenInsertIfNew? m k v).snd = m.insertIfNew k v